Continuous-time quantum walks have proven to be an extremely useful framework for the design of several quantum algorithms. Often, the running time of quantum algorithms in this framework is characterized by the quantum hitting time: the time required by the quantum walk to find a vertex of interest with a high probability. In this article, we provide improved upper bounds for the quantum hitting time that can be applied to several CTQW-based quantum algorithms. In particular, we apply our techniques to the glued-trees problem, improving their hitting time upper bound by a polynomial factor: from $O(n^5)$ to $O(n^2\log n)$. Furthermore, our methods also help to exponentially improve the dependence on precision of the continuous-time quantum walk based algorithm to find a marked node on any ergodic, reversible Markov chain by Chakraborty et al. [PRA 102, 022227 (2020)].
翻译:连续时间量子漫步被证明是设计几种量子算法的一个极为有用的框架。在这个框架中,量子算法的运行时间通常以量子打击时间为特征:量子漫步所需的时间,以找到一个高概率的兴趣顶点。在本条中,我们为量子打击时间提供了更好的上限,可以应用于几个基于CTQW的量子算法。特别是,我们运用了我们的技术来解决粘结的树木问题,改善了它们受多元系数约束的打击时间:从$O(n)5美元到$(n)2\log n)。此外,我们的方法还有助于快速地改善对基于连续时间量子漫步算法的精确性的依赖,以便找到查克拉博蒂等人(Chakraborty等人)的任何刻度、可逆的Markov链[PRA 102, 022227 (202020)]。