We introduce a comprehensive Bayesian multivariate predictive inference framework. The basis for our framework is a hierarchical Bayesian model, that is a mixture of finite Polya trees corresponding to multiple dyadic partitions of the unit cube. Given a sample of observations from an unknown multivariate distribution, the posterior predictive distribution is used to model and generate future observations from the unknown distribution. We illustrate the implementation of our methodology and study its performance on simulated examples. We introduce an algorithm for constructing conformal prediction sets, that provide finite sample probability assurances for future observations, with our Bayesian model.


翻译:我们引入了全面的巴伊西亚多变量预测推论框架, 我们框架的基础是一个等级性贝伊西亚模型, 即与单元立方体多维分解相对应的限定聚亚树混合物。 从未知多变量分布的观测样本中, 后端预测分布被用于模拟和生成未知分布的未来观测。 我们用模拟实例来说明我们方法的实施情况并研究其性能。 我们引入了一种构建符合逻辑的预测集的算法, 为未来观测提供有限的样本概率保证, 并使用我们的巴伊西亚模型 。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
253+阅读 · 2020年4月19日
【新书】Python编程基础,669页pdf
专知会员服务
197+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Imitation by Predicting Observations
Arxiv
4+阅读 · 2021年7月8日
Arxiv
4+阅读 · 2020年3月19日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
253+阅读 · 2020年4月19日
【新书】Python编程基础,669页pdf
专知会员服务
197+阅读 · 2019年10月10日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员