We introduce a comprehensive Bayesian multivariate predictive inference framework. The basis for our framework is a hierarchical Bayesian model, that is a mixture of finite Polya trees corresponding to multiple dyadic partitions of the unit cube. Given a sample of observations from an unknown multivariate distribution, the posterior predictive distribution is used to model and generate future observations from the unknown distribution. We illustrate the implementation of our methodology and study its performance on simulated examples. We introduce an algorithm for constructing conformal prediction sets, that provide finite sample probability assurances for future observations, with our Bayesian model.
翻译:我们引入了全面的巴伊西亚多变量预测推论框架, 我们框架的基础是一个等级性贝伊西亚模型, 即与单元立方体多维分解相对应的限定聚亚树混合物。 从未知多变量分布的观测样本中, 后端预测分布被用于模拟和生成未知分布的未来观测。 我们用模拟实例来说明我们方法的实施情况并研究其性能。 我们引入了一种构建符合逻辑的预测集的算法, 为未来观测提供有限的样本概率保证, 并使用我们的巴伊西亚模型 。