This paper presents an architecture and methodology to empower a service robot to navigate an indoor environment with semantic decision making, given RGB ego view. This method leverages the knowledge of robot's actuation capability and that of scenes, objects and their relations -- represented in a semantic form. The robot navigates based on GeoSem map - a relational combination of geometric and semantic map. The goal given to the robot is to find an object in a unknown environment with no navigational map and only egocentric RGB camera perception. The approach is tested both on a simulation environment and real life indoor settings. The presented approach was found to outperform human users in gamified evaluations with respect to average completion time.
翻译:本文介绍了一种结构和方法,使服务机器人能够根据 RGB 自我视角,在室内环境里以语义决策的方式驾驶一个服务机器人。这一方法利用机器人的激活能力以及场景、物体及其关系的知识 -- -- 以语义形式表示。基于 GeoSem 地图的机器人导航 -- -- 几何和语义地图的关联组合。给机器人的目标是在一个未知环境中找到一个物体,没有导航地图,只有以自我为中心的 RGB 相机的感知。该方法在模拟环境中和室内真实生活环境中进行测试。在平均完成时间的量化评价中,发现该方法优于人类用户。