Detecting abnormal crowd motion emerging from complex interactions of individuals is paramount to ensure the safety of crowds. Crowd-level abnormal behaviors (CABs), e.g., counter flow and crowd turbulence, are proven to be the crucial causes of many crowd disasters. In the recent decade, video anomaly detection (VAD) techniques have achieved remarkable success in detecting individual-level abnormal behaviors (e.g., sudden running, fighting and stealing), but research on VAD for CABs is rather limited. Unlike individual-level anomaly, CABs usually do not exhibit salient difference from the normal behaviors when observed locally, and the scale of CABs could vary from one scenario to another. In this paper, we present a systematic study to tackle the important problem of VAD for CABs with a novel crowd motion learning framework, multi-scale motion consistency network (MSMC-Net). MSMC-Net first captures the spatial and temporal crowd motion consistency information in a graph representation. Then, it simultaneously trains multiple feature graphs constructed at different scales to capture rich crowd patterns. An attention network is used to adaptively fuse the multi-scale features for better CAB detection. For the empirical study, we consider three large-scale crowd event datasets, UMN, Hajj and Love Parade. Experimental results show that MSMC-Net could substantially improve the state-of-the-art performance on all the datasets.
翻译:检测来自个人复杂互动的异常人群运动对于确保人群安全至关重要。 人群层面的异常行为(如反流和人群动荡)被证明是许多人群灾害的关键原因。 近十年来,视频异常检测(VAD)技术在检测个人层面异常行为(如突然运行、打架和偷窃)方面取得了显著成功,但对于个人层面的 CAB 的 VAD 研究相当有限。 与个人层面的异常情况不同, CAB 通常不会显示与当地观察到的正常行为有显著差异, CAB 的规模可能因不同而不同。 在本文件中,我们介绍了一项系统研究,以解决 CAB 的 VAD 重要问题, 其新型人群运动学习框架、 多规模运动一致性网络(MSMC-Net) 。 MSMC-Net 首次以图表形式记录空间和时间人群运动一致性信息。 然后,它同时培训在不同尺度构建的多个地貌图,以捕捉到丰富的人群模式。 关注网络被用来将多尺度的多尺度特征结合到多尺度的 CADAD, 我们的实验性模型研究会考测算所有大规模的数据。