Purpose: Echocardiography is commonly used as a non-invasive imaging tool in clinical practice for the assessment of cardiac function. However, delineation of the left ventricle is challenging due to the inherent properties of ultrasound imaging, such as the presence of speckle noise and the low signal-to-noise ratio. Methods: We propose a semi-automated segmentation algorithm for the delineation of the left ventricle in temporal 3D echocardiography sequences. The method requires minimal user interaction and relies on a diffeomorphic registration approach. Advantages of the method include no dependence on prior geometrical information, training data, or registration from an atlas. Results: The method was evaluated using three-dimensional ultrasound scan sequences from 18 patients from the Mazankowski Alberta Heart Institute, Edmonton, Canada, and compared to manual delineations provided by an expert cardiologist and four other registration algorithms. The segmentation approach yielded the following results over the cardiac cycle: a mean absolute difference of 1.01 (0.21) mm, a Hausdorff distance of 4.41 (1.43) mm, and a Dice overlap score of 0.93 (0.02). Conclusions: The method performed well compared to the four other registration algorithms.
翻译:方法:我们建议用半自动分解算法来在时间 3D回声心电图序列中划定左心室,这种方法需要最小的用户交互作用,并依赖于二异性貌登记方法。方法的优点包括不依赖先前的几何信息、培训数据或从一个图册登记,但由于超声成像的固有特性,左心室的划界具有挑战性,例如有闪烁噪音和信号对噪音比率低。方法:我们建议用半自动分解算法来在时间 3D回声心电图序列中划定左心室的划界。这一方法需要最低限度的用户互动,并依赖于二异体形态登记方法。方法的优点包括不依赖先前的几何信息、培训数据或从一个图册登记。结果:该方法是使用加拿大埃德蒙顿Mazankowski 艾伯塔心脏研究所18名病人的三维超声波扫描序列进行评估的,并与专家心脏病学家和其他4个登记算法进行了比较。分解法在心脏周期中得出以下结果:平均绝对差1.01 0.21毫米,豪斯多夫距离4.41(1.43毫米和0.9平方算算法进行了4的模拟的模拟登记。