On a finite time interval $(0,T)$, we consider the multiresolution Galerkin discretization of a modified Hilbert transform $\mathcal H_T$ which arises in the space-time Galerkin discretization of the linear diffusion equation. To this end, we design spline-wavelet systems in $(0,T)$ consisting of piecewise polynomials of degree $\geq 1$ with sufficiently many vanishing moments which constitute Riesz bases in the Sobolev spaces $ H^{s}_{0,}(0,T)$ and $ H^{s}_{,0}(0,T)$. These bases provide multilevel splittings of the temporal discretization spaces into "increment" or "detail" spaces of direct sum type. Via algebraic tensor-products of these temporal multilevel discretizations with standard, hierarchic finite element spaces in the spatial domain (with standard Lagrangian FE bases), sparse space-time tensor-product spaces are obtained, which afford a substantial reduction in the number of the degrees of freedom as compared to time-marching discretizations. In addition, temporal spline-wavelet bases allow to compress certain nonlocal integrodifferential operators which appear in stable space-time variational formulations of initial-boundary value problems, such as the heat equation and the acoustic wave equation. An efficient preconditioner is proposed that affords linear complexity solves of the linear system of equations which results from the sparse space-time Galerkin discretization.


翻译:暂无翻译

0
下载
关闭预览

相关内容

专知会员服务
33+阅读 · 2021年3月7日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
16+阅读 · 2022年5月17日
Arxiv
18+阅读 · 2021年3月16日
A survey on deep hashing for image retrieval
Arxiv
15+阅读 · 2020年6月10日
VIP会员
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关论文
Arxiv
16+阅读 · 2022年5月17日
Arxiv
18+阅读 · 2021年3月16日
A survey on deep hashing for image retrieval
Arxiv
15+阅读 · 2020年6月10日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员