We study fine-grained error bounds for differentially private algorithms for counting under continual observation. Our main insight is that the matrix mechanism when using lower-triangular matrices can be used in the continual observation model. More specifically, we give an explicit factorization for the counting matrix $M_\mathsf{count}$ and upper bound the error explicitly. We also give a fine-grained analysis, specifying the exact constant in the upper bound. Our analysis is based on upper and lower bounds of the {\em completely bounded norm} (cb-norm) of $M_\mathsf{count}$. Along the way, we improve the best-known bound of 28 years by Mathias (SIAM Journal on Matrix Analysis and Applications, 1993) on the cb-norm of $M_\mathsf{count}$ for a large range of the dimension of $M_\mathsf{count}$. Furthermore, we are the first to give concrete error bounds for various problems under continual observation such as binary counting, maintaining a histogram, releasing an approximately cut-preserving synthetic graph, many graph-based statistics, and substring and episode counting. Finally, we note that our result can be used to get a fine-grained error bound for non-interactive local learning {and the first lower bounds on the additive error for $(\epsilon,\delta)$-differentially-private counting under continual observation.} Subsequent to this work, Henzinger et al. (SODA2023) showed that our factorization also achieves fine-grained mean-squared error.
翻译:我们研究细微的私算法的细微错误界限, 用于在持续观察中进行计数。 我们的主要洞察力是, 使用低三角矩阵时的矩阵机制可以在连续观察模型中使用。 更具体地说, 我们对计算 $M ⁇ mathsf{count} $ 的矩阵进行明确的系数化, 并且对错误进行上层约束。 我们还对大范围的 $M ⁇ mathsf{count} 进行细微的精确度分析。 我们的分析基于 {em 完全封闭的规范} (cb- norm) 的上下层和下层界限。 沿着前进的道路, 我们改进了马蒂亚斯28年来最知名的界限( IM 关于矩阵分析和应用的期刊, 1993) 对 $M ⁇ mathsfsf{count 的 cb-norum 值进行精确度分析。 我们还首先对持续观察中的各种问题进行具体的错误化, 例如计数, 保持其精确度, 释放一个大约刻值的Snal- rudealalalalal codeal codeal code, exal dal dal coal coild, lades the sal lades the sal max- sal- laveal lating the sal laveild.