BACKGROUND: In 1967, Frederick Lord posed a conundrum that has confused scientists for over 50-years. Subsequently named Lord's 'paradox', the puzzle centres on the observation that two common approach to analyses of 'change' between two time-points can produce radically different results. Approach 1 involves analysing the follow-up minus baseline (i.e., 'change score') and Approach 2 involves analysing the follow-up conditional on baseline. METHODS: At the heart of Lord's 'paradox' lies another puzzle concerning the use of 'change scores' in observational data. Using directed acyclic graphs and data simulations, we introduce, explore, and explain the 'paradox', consider the philosophy of change, and discuss the warnings and lessons of this 50-year puzzle. RESULTS: Understanding Lord's 'paradox' starts with recognising that a variable may change for three reasons: (A) 'endogenous change', which represents simple changes in scale, (B) 'random change', which represents change due to random processes, and (C) 'exogenous change', which represents all non-endogenous, non-random change. Unfortunately, in observational data, neither Approach 1 nor Approach 2 are able to reliably estimate the causes of 'exogenous change'. Approach 1 evaluates obscure estimands with little, if any, real-world interpretation. Approach 2 is susceptible to mediator-outcome confounding and cannot distinguish exogenous change from random change. Valid and precise estimates of a useful causal estimand instead require appropriate multivariate methods (such as g-methods) and more than two measures of the outcome. CONCLUSION: Lord's 'paradox' reiterates the dangers of analysing change scores in observational data and highlights the importance of considering causal questions within a causal framework.
翻译:1967年,弗雷德里克·洛德(Frederick Lord)提出一个难题,使科学家们混淆了50多年的科学家。后来被命名为Lord的“参数 ”, 谜题的中心是观察数据中使用“ 变换分数” 的“ 参数 ” 。 之后, 我们引入、 探索和解释“ 变换” 的两种共同分析方法可以产生截然不同的结果。 方法1 涉及分析后续减去基线( 即“ 变换分数 ” ), 方法2 涉及分析后续和基准( 变换分数 ) 。 方法 方法2: 理解主的“ 变换分数 ” 和 方法2 分析“ 变数 ” 。 方法: “ 变数” 变数的核心是“ 变数 ”, 它代表着随机变数的变数, ( B) “ 变数 变数 变数 ” 和“ 变数 变数 ” ( C) 和 “ 变数 变数 变数 变数 变数” 而不是“ 变数 变数 变数 ” 。 变数 变数” 算算算算算算算算算算算算算算算算算数 。