Accurately predicting the relevance of items to users is crucial to the success of many social platforms. Conventional approaches train models on logged historical data; but recommendation systems, media services, and online marketplaces all exhibit a constant influx of new content -- making relevancy a moving target, to which standard predictive models are not robust. In this paper, we propose a learning framework for relevance prediction that is robust to changes in the data distribution. Our key observation is that robustness can be obtained by accounting for how users causally perceive the environment. We model users as boundedly-rational decision makers whose causal beliefs are encoded by a causal graph, and show how minimal information regarding the graph can be used to contend with distributional changes. Experiments in multiple settings demonstrate the effectiveness of our approach.
翻译:准确预测项目与用户的相关性对于许多社会平台的成功至关重要。常规方法在记录历史数据方面培训模型;但建议系统、媒体服务和在线市场都呈现出不断涌现的新内容 -- -- 使相关性成为移动目标,而标准预测模型并不健全。在本文中,我们提出了一个与数据分布变化密切相关的相关性预测学习框架。我们的主要观察是,通过计算用户如何因果地看待环境,可以取得稳健性。我们以用户为模范,以其因果信仰被因果图表编码的界限性决策者,我们以用户为模范,说明如何用最起码的图表信息来应对分布变化。在多个环境中进行的实验显示了我们的方法的有效性。