In this essay, I present the advantages and, I dare say, the beauty of programming in a language with set-theoretic types, that is, types that include union, intersection, and negation type connectives. I show by several examples how set-theoretic types are necessary to type some common programming patterns, but also how they play a key role in typing several language constructs-from branching and pattern matching to function overloading and type-cases-very precisely. I start by presenting the theory of types known as semantic subtyping and extend it to include polymorphic types. Next, I discuss the design of languages that use these types. I start by defining a theoretical framework that covers all the examples given in the first part of the presentation. Since the system of the framework cannot be effectively implemented, I then describe three effective restrictions of this system: (i) a polymorphic language with explicitly-typed functions, (ii) an implicitly-typed polymorphic language \`a la Hindley-Milner, and (iii) a monomorphic language that, by implementing classic union-elimination, precisely reconstructs intersection types for functions and implements a very general form of occurrence typing. I conclude the presentation with a short overview of other aspects of these languages, such as pattern matching, gradual typing, and denotational semantics.


翻译:在本论文中,我介绍用设定理论类型,即包括组合、交叉和否定类型连接等类型的语言编程的优点,我敢说,用设定理论类型,用设定理论类型,用设定理论类型来键入一些共同的编程模式。我通过几个例子展示了设置理论类型对于键入某些共同编程模式的必要性,同时也展示了它们如何在从分支和模式中键入几种语言构造与功能超载和类型-非常精确地匹配方面发挥关键作用。我首先介绍了被称为语义缩略缩缩缩略语的理论,并将其扩展至多形态类型。接着,我讨论了使用这些类型的语言的设计。我首先界定了一个理论框架,涵盖介绍第一部分中列举的所有实例。由于框架体系无法有效实施,我然后描述了这一体系的三个有效限制:(一) 一种具有明确类型功能的多形态语言,(二) 一种隐含型的多形态语言 ⁇ a la Hindley-Milner, 以及(三) 一种单一形态语言,通过实施典型的工会-缩略缩略概览,精确地重建了这些格式的交叉类型功能和格式的其他格式。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
65+阅读 · 2021年6月18日
VIP会员
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员