Recently, the generality of natural language text has been leveraged to develop transferable recommender systems. The basic idea is to employ pre-trained language models~(PLM) to encode item text into item representations. Despite the promising transferability, the binding between item text and item representations might be too tight, leading to potential problems such as over-emphasizing the effect of text features and exaggerating the negative impact of domain gap. To address this issue, this paper proposes VQ-Rec, a novel approach to learning Vector-Quantized item representations for transferable sequential Recommenders. The main novelty of our approach lies in the new item representation scheme: it first maps item text into a vector of discrete indices (called item code), and then employs these indices to lookup the code embedding table for deriving item representations. Such a scheme can be denoted as "text $\Longrightarrow$ code $\Longrightarrow$ representation". Based on this representation scheme, we further propose an enhanced contrastive pre-training approach, using semi-synthetic and mixed-domain code representations as hard negatives. Furthermore, we design a new cross-domain fine-tuning method based on a differentiable permutation-based network. Extensive experiments conducted on six public benchmarks demonstrate the effectiveness of the proposed approach, in both cross-domain and cross-platform settings. Code and pre-trained model are available at: https://github.com/RUCAIBox/VQ-Rec.
翻译:最近,自然语言文本的通用性被用来开发可转让建议系统。基本想法是使用经过预先训练的语言模型~(PLM)将项目文本编码成项目表示式。尽管项目文本和项目表述式之间的约束力可能过于紧密,但尽管有希望可转让性,但项目文本和项目表述式之间的约束力可能过于紧密,导致过度强调文本特征的影响和夸大域差的负面影响等潜在问题。为解决这一问题,本文件提议VQ-Rec,这是为可转让顺序建议者学习矢量定量项目表达式的一种新颖方法。我们的方法的主要新颖之处在于新的项目表达式:它首先将项目文本映射成离散指数的矢量(所谓的项目代码),然后使用这些指数来查看用于衍生项目表述的代码嵌表的代码嵌入表。这个方法可以被描述为“文本 $\Longrightrow$ 代码 $\Longrightrorrow$ 代表制”。基于这种表述式的模型,我们进一步提议一种基于对比性培训前方法,即使用半合成和混合版本代码化的代码表达式方法。我们设计了一个基于硬化/跨式的系统的系统,在硬化的网络上,在硬化的系统上进行跨系统化的跨系统化的跨系统化。我们设计了一个跨系统化的系统化的系统化的系统化。我们设计了一个跨式的系统化的系统化的系统化的系统化方法。在进行。在不同的系统式式的系统式的系统。我们式的跨式的系统化的系统式的系统式的系统式的系统式的系统式的系统化。我们设计了一个新的系统式的系统式的系统式的系统式的系统式的系统式的系统式式式式式的系统式样。