To aggregate rankings into a social ranking, one can use scoring systems such as Plurality, Veto, and Borda. We distinguish three types of methods: ranking by score, ranking by repeatedly choosing a winner that we delete and rank at the top, and ranking by repeatedly choosing a loser that we delete and rank at the bottom. The latter method captures the frequently studied voting rules Single Transferable Vote (aka Instant Runoff Voting), Coombs, and Baldwin. In an experimental analysis, we show that the three types of methods produce different rankings in practice. We also provide evidence that sequentially selecting winners is most suitable to detect the "true" ranking of candidates. For different rules in our classes, we then study the (parameterized) computational complexity of deciding in which positions a given candidate can appear in the chosen ranking. As part of our analysis, we also consider the Winner Determination problem for STV, Coombs, and Baldwin and determine their complexity when there are few voters or candidates.


翻译:在社会排名中,人们可以使用多种等级、Veto和Borda等评分系统。我们区分了三种评分方法:分级、反复选择我们删除的胜者、排名最高、反复选择我们删除的败者、排名最低的败者,然后反复选择我们删除的败者、排名最低的败者。后一种方法捕捉了经常研究的投票规则:单一可转移投票(aka instant runnoff 投票)、Coombs和Baldwin。在一项实验分析中,我们发现这三种方法在实际中产生不同的排名。我们还提供了证据,证明按顺序选择优者最适于检测候选人的“真实”排名。对于我们班级的不同规则,我们随后研究确定某个特定候选人在所选的排名中的位置的(参数化)计算复杂性。作为我们分析的一部分,我们还考虑了STV、Coombs和Baldwin的温人决定问题,并在没有多少选民或候选人时决定其复杂性。

0
下载
关闭预览

相关内容

专知会员服务
37+阅读 · 2021年4月27日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Statistical Network Data Analysis in Economics
Arxiv
0+阅读 · 2022年10月26日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员