In this paper, we develop a simple yet effective screening rule strategy to improve the computational efficiency in solving structured optimization involving nonconvex $\ell_{q,p}$ regularization. Based on an iteratively reweighted $\ell_1$ (IRL1) framework, the proposed screening rule works like a preprocessing module that potentially removes the inactive groups before starting the subproblem solver, thereby reducing the computational time in total. This is mainly achieved by heuristically exploiting the dual subproblem information during each iteration.Moreover, we prove that our screening rule can remove all inactive variables in a finite number of iterations of the IRL1 method. Numerical experiments illustrate the efficiency of our screening rule strategy compared with several state-of-the-art algorithms.
翻译:在本文中,我们制定了一个简单而有效的筛选规则战略,以提高在解决涉及非convex$@ell ⁇ q,p}$正规化的结构性优化方面的计算效率。根据反复重估的$ell_1美元(IRL1)框架,拟议的筛选规则像一个预处理模块,在启动子问题解答器之前有可能清除不活动群体,从而减少计算总时间。这主要通过在每次迭代期间过度利用双重问题次问题信息来实现。未来,我们证明我们的筛选规则可以去除IRL1方法有限次数迭代中的所有不活动变量。数字实验显示了我们筛选规则战略与若干最新算法相比的效率。