Seismic tomography solves high-dimensional optimization problems to image subsurface structures of Earth. In this paper, we propose to use random batch methods to construct the gradient used for iterations in seismic tomography. Specifically, we use the frozen Gaussian approximation to compute seismic wave propagation, and then construct stochastic gradients by random batch methods. The method inherits the spirit of stochastic gradient descent methods for solving high-dimensional optimization problems. The proposed idea is general in the sense that it does not rely on the usage of the frozen Gaussian approximation, and one can replace it with any other efficient wave propagation solvers, e.g., Gaussian beam methods. We prove the convergence of the random batch method in the mean-square sense, and show the numerical performance of the proposed method by two-dimensional and three-dimensional examples of wave-equation-based travel-time inversion and full-waveform inversion, respectively.
翻译:地震断层法解决了地表下结构图像的高度优化问题。 在本文中, 我们提议使用随机批量方法构建地震断层中迭代所用的梯度。 具体地说, 我们使用冷冻高山近似值来计算地震波的传播, 然后通过随机批量方法构建随机切换梯度。 这种方法继承了解决高维优化问题的随机切分梯度梯度下降方法的精神。 提议的想法很笼统, 它不依赖于冷冻的高山近似值, 并且可以用任何其他高效的波波传溶剂来取代它, 例如高山光束方法。 我们用平均值来证明随机批量方法的趋同, 并分别用以波度旅行时间的二维和三维实例来显示拟议方法的数值性能。