The enormous amount of network equipment and users implies a tremendous growth of Internet traffic for multimedia services. To mitigate the traffic pressure, architectures with in-network storage are proposed to cache popular content at nodes in close proximity to users to shorten the backhaul links. Meanwhile, the reduction of transmission distance also contributes to the energy saving. However, due to limited storage, only a fraction of the content can be cached, while caching the most popular content is cost-effective. Correspondingly, it becomes essential to devise an effective popularity prediction method. In this regard, existing efforts adopt dynamic graph neural network (DGNN) models, but it remains challenging to tackle sparse datasets. In this paper, we first propose a reformative temporal graph network, which is named STGN, that utilizes extra semantic messages to enhance the temporal and structural learning of a DGNN model, since the consideration of semantics can help establish implicit paths within the sparse interaction graph and hence improve the prediction performance. Furthermore, we propose a user-specific attention mechanism to fine-grainedly aggregate various semantics. Finally, extensive simulations verify the superiority of our STGN models and demonstrate their high potential in energy-saving.
翻译:网络设备和用户数量庞大,意味着多媒体服务的互联网流量急剧增长。为了减轻交通压力,提议网络内存储结构在用户附近的节点隐藏流行内容,以缩短回航连接。与此同时,减少传输距离也有助于节能。然而,由于储存有限,只有一小部分内容可以缓存,同时缓存最受欢迎的内容是具有成本效益的。相应地,必须制定有效的普及预测方法。在这方面,现有的努力采用动态图形神经网络模型,但处理稀少的数据集仍具有挑战性。在本文件中,我们首先提议一个改革性时间图网络,称为STGN,利用额外的语义信息来增强DGNN模型的时间和结构学习,因为对语义学的考虑有助于在稀薄的互动图表中建立隐含路径,从而改进预测性能。此外,我们提议了一个用户专用的注意机制,以精细综合各种语义模型。最后,大量模拟了我们STGN模型的能源潜力,并展示了这些模型的高超能性。</s>