Standard Markov chain Monte Carlo (MCMC) admits three fundamental control parameters: the number of chains, the length of the warmup phase, and the length of the sampling phase. These control parameters play a large role in determining the amount of computation we deploy. In practice, we need to walk a line between achieving sufficient precision and not wasting precious computational resources and time. We review general strategies to check the length of the warmup and sampling phases, and examine the three control parameters of MCMC in the contexts of CPU- and GPU-based hardware. Our discussion centers around three tasks: (1) inference about a latent variable, (2) computation of expectation values and quantiles, and (3) diagnostics to check the reliability of the estimators. This chapter begins with general recommendations on the control parameters of MCMC, which have been battle-tested over the years and often motivate defaults in Bayesian statistical software. Usually we do not know ahead of time how a sampler will interact with a target distribution, and so the choice of MCMC algorithm and its control parameters, tend to be based on experience, re-evaluated after simulations have been obtained and analyzed. The second part of this chapter provides a theoretical motivation for our recommended approach, with pointers to some concerns and open problems. We also examine recent developments on the algorithmic and hardware fronts, which motivate new computational approaches to MCMC.
翻译:暂无翻译