In the group testing problem, the goal is to identify a subset of defective items within a larger set of items based on tests whose outcomes indicate whether any defective item is present. This problem is relevant in areas such as medical testing, DNA sequencing, and communications. In this paper, we study a doubly-regular design in which the number of tests-per-item and the number of items-per-test are fixed. We analyze the performance of this test design alongside the Definite Defectives (DD) decoding algorithm in several settings, namely, (i) the sub-linear regime $k=o(n)$ with exact recovery, (ii) the linear regime $k=\Theta(n)$ with approximate recovery, and (iii) the size-constrained setting, where the number of items per test is constrained. Under setting (i), we show that our design together with the DD algorithm, matches an existing achievability result for the DD algorithm with the near-constant tests-per-item design, which is known to be asymptotically optimal in broad scaling regimes. Under setting (ii), we provide novel approximate recovery bounds that complement a hardness result regarding exact recovery. Lastly, under setting (iii), we improve on the best known upper and lower bounds in scaling regimes where the maximum test size grows with the total number of items.
翻译:在小组测试问题中,目标是在测试结果显示是否存在任何有缺陷的物品的更大系列项目中确定一组有缺陷的物品。 这个问题与医学测试、DNA测序和通信等领域有关。 在本文中, 我们研究一种双常规设计, 将每件试验的数量和每件试验项目的数量固定下来。 我们分析这一测试设计与若干环境的“ 缺陷分解”算法同时的性能, 即:(一) 亚线性制度$k=o(n)美元, 准确回收;(二) 线性制度$k_Theta(n)美元,大致恢复;(三) 尺寸受限制的设置, 每件试验项目的数量受到限制。 在设置(一) 时, 我们显示我们与DD算法一起设计, 将现有的D算法的可实现性结果与接近一致的测试-每件试验算法的算法相匹配, 据知, 即精确恢复制度的全面缩放为现最佳的准性。 (二) 在设定最大范围后, 我们提供最精确的恢复结果, 在已知的缩缩缩缩缩的评中, 在最后, 我们提供最新的恢复结果。