Audio is the main form for the visually impaired to obtain information. In reality, all kinds of visual data always exist, but audio data does not exist in many cases. In order to help the visually impaired people to better perceive the information around them, an image-to-audio-description (I2AD) task is proposed to generate audio descriptions from images in this paper. To complete this totally new task, a modal translation network (MT-Net) from visual to auditory sense is proposed. The proposed MT-Net includes three progressive sub-networks: 1) feature learning, 2) cross-modal mapping, and 3) audio generation. First, the feature learning sub-network aims to learn semantic features from image and audio, including image feature learning and audio feature learning. Second, the cross-modal mapping sub-network transforms the image feature into a cross-modal representation with the same semantic concept as the audio feature. In this way, the correlation of inter-modal data is effectively mined for easing the heterogeneous gap between image and audio. Finally, the audio generation sub-network is designed to generate the audio waveform from the cross-modal representation. The generated audio waveform is interpolated to obtain the corresponding audio file according to the sample frequency. Being the first attempt to explore the I2AD task, three large-scale datasets with plenty of manual audio descriptions are built. Experiments on the datasets verify the feasibility of generating intelligible audio from an image directly and the effectiveness of proposed method.


翻译:听觉是视觉受损者获取信息的主要形式。 在现实中,所有类型的视觉数据总是存在,但在许多情况下并不存在音频数据。 首先,为了帮助视力受损者更好地了解周围的信息,建议用图像到音频描述( I2AD) 任务从本文中的图像生成音频描述。 为了完成这一全新的任务, 提议从视觉到听觉的模型翻译网络( MT- Net ) 。 拟议的MT- Net 包括三个进步的子网络:1 特征学习, 2 跨模式绘图, 3 音频生成。 首先, 功能学习子网络旨在从图像和音频中学习语义特征, 包括图像特征学习和音频特征学习。 其次, 跨模式绘图子网络将图像特征转换成一个跨模式的表达方式, 与音频特性相同。 以这种方式有效地挖掘了跨模式数据的相关性, 以缓解图像和音频之间的差异。 最后, 音频生成子生成子波格式, 从图像和音频图像的直径波变, 将生成一个跨模式, 将生成成一个磁波变模型。

0
下载
关闭预览

相关内容

在机器学习中,表征学习或表示学习是允许系统从原始数据中自动发现特征检测或分类所需的表示的一组技术。这取代了手动特征工程,并允许机器学习特征并使用它们执行特定任务。在有监督的表征学习中,使用标记的输入数据来学习特征,包括监督神经网络,多层感知器和(监督)字典学习。在无监督表征学习中,特征是与未标记的输入数据一起学习的,包括字典学习,独立成分分析,自动编码器,矩阵分解和各种形式的聚类。
Python图像处理,366页pdf,Image Operators Image Processing in Python
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
【Google】无监督机器翻译,Unsupervised Machine Translation
专知会员服务
35+阅读 · 2020年3月3日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
30+阅读 · 2019年10月16日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
CornerNet: Detecting Objects as Paired Keypoints 论文笔记
统计学习与视觉计算组
7+阅读 · 2018年9月27日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 每周算法:Wide & Deep (by Google)
LibRec智能推荐
9+阅读 · 2017年10月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Recurrent Fusion Network for Image Captioning
Arxiv
3+阅读 · 2018年7月31日
Arxiv
7+阅读 · 2018年1月21日
VIP会员
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
CornerNet: Detecting Objects as Paired Keypoints 论文笔记
统计学习与视觉计算组
7+阅读 · 2018年9月27日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 每周算法:Wide & Deep (by Google)
LibRec智能推荐
9+阅读 · 2017年10月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员