Recognizing facial activity is a well-understood (but non-trivial) computer vision problem. However, reliable solutions require a camera with a good view of the face, which is often unavailable in wearable settings. Furthermore, in wearable applications, where systems accompany users throughout their daily activities, a permanently running camera can be problematic for privacy (and legal) reasons. This work presents an alternative solution based on the fusion of wearable inertial sensors, planar pressure sensors, and acoustic mechanomyography (muscle sounds). The sensors were placed unobtrusively in a sports cap to monitor facial muscle activities related to facial expressions. We present our integrated wearable sensor system, describe data fusion and analysis methods, and evaluate the system in an experiment with thirteen subjects from different cultural backgrounds (eight countries) and both sexes (six women and seven men). In a one-model-per-user scheme and using a late fusion approach, the system yielded an average F1 score of 85.00% for the case where all sensing modalities are combined. With a cross-user validation and a one-model-for-all-user scheme, an F1 score of 79.00% was obtained for thirteen participants (six females and seven males). Moreover, in a hybrid fusion (cross-user) approach and six classes, an average F1 score of 82.00% was obtained for eight users. The results are competitive with state-of-the-art non-camera-based solutions for a cross-user study. In addition, our unique set of participants demonstrates the inclusiveness and generalizability of the approach.


翻译:承认面部活动是一个非常清楚(但非三重)的计算机视觉问题。然而,可靠的解决方案需要一台清晰可见的照相机,其面孔往往在可磨损的环境下得不到。此外,在可磨损的应用程序中,系统陪伴用户在其日常活动中,一个永久运行的照相机可能会因隐私(和法律)原因产生问题。这项工作提供了一个基于可磨损惯性感应器、平压感应器和声学混合法(肌肉声音)的替代解决方案。传感器被安放在一个体育帽中,以监测与面部表达有关的面部肌肉活动。我们展示了我们的综合可磨损感应传感器系统,描述数据聚合和分析方法,并在对来自不同文化背景(8个国家)和男女(6个女性和7个男性)的13个实验中评估了该系统。在1个模型-每个用户计划中,在所有感测方法组合的情况下,系统平均得出85.00 %的F1分。在交叉用户验证和1个模型上与8个非用户计划之间,1个用户的F1级标准是8个比例。在8个用户中,1级和13个用户的平均比例为1个用户。

0
下载
关闭预览

相关内容

可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能,可穿戴设备将会对我们的生活、感知带来很大的转变。
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月30日
Arxiv
20+阅读 · 2020年6月8日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
26+阅读 · 2020年3月13日
VIP会员
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员