Recent research has examined algorithms to minimize robots' resource footprints. The class of combinatorial filters (discrete variants of widely-used probabilistic estimators) has been studied and methods for reducing their space requirements introduced. This paper extends existing combinatorial filters by introducing a natural generalization that we dub cover combinatorial filters. In addressing the new -- but still NP-complete -- problem of minimization of cover filters, this paper shows that multiple concepts previously believed to be true about combinatorial filters (and actually conjectured, claimed, or assumed to be) are in fact false. For instance, minimization does not induce an equivalence relation. We give an exact algorithm for the cover filter minimization problem. Unlike prior work (based on graph coloring) we consider a type of clique-cover problem, involving a new conditional constraint, from which we can find more general relations. In addition to solving the more general problem, the algorithm also corrects flaws present in all prior filter reduction methods. In employing SAT, the algorithm provides a promising basis for future practical development.
翻译:最近的研究研究了尽量减少机器人资源足迹的算法。 已经研究了分类过滤器的类别( 广泛使用的概率估测器的分解变体) 并采用了减少空间要求的方法。 本文扩展了现有的组合过滤器, 采用了一种自然的概括性, 我们用它来覆盖组合过滤器。 在解决新的( 但仍然是NP- 完整的) 最小化覆盖过滤器的问题时, 本文显示, 先前认为对分类过滤器( 和实际上被预测、 声称或假定的) 的多重概念其实是错误的。 例如, 最小化并不产生等值关系。 我们给覆盖的过滤最小化问题给出精确的算法。 我们与先前的工作( 基于图形颜色) 不同, 我们考虑的分类覆盖问题类型, 涉及到新的条件性制约, 我们可以从中找到更一般的关系。 除了解决更普遍的问题外, 算法还纠正了所有先前过滤器削减方法中存在的缺陷。 在使用 SAT 时, 算法为未来的实际发展提供了很有希望的基础 。