Artificial intelligence (AI)-based clinical decision support systems (CDSS) promise to enhance diagnostic accuracy and efficiency in computational pathology. However, human-AI collaboration might introduce automation bias, where users uncritically follow automated cues. This bias may worsen when time pressure strains practitioners' cognitive resources. We quantified automation bias by measuring the adoption of negative system consultations and examined the role of time pressure in a web-based experiment, where trained pathology experts (n=28) estimated tumor cell percentages. Our results indicate that while AI integration led to a statistically significant increase in overall performance, it also resulted in a 7% automation bias rate, where initially correct evaluations were overturned by erroneous AI advice. Conversely, time pressure did not exacerbate automation bias occurrence, but appeared to increase its severity, evidenced by heightened reliance on the system's negative consultations and subsequent performance decline. These findings highlight potential risks of AI use in healthcare.
翻译:暂无翻译