Living-off-the-land (LOTL) techniques pose a significant challenge to security operations, exploiting legitimate tools to execute malicious commands that evade traditional detection methods. To address this, we present a robust augmentation framework for cyber defense systems as Security Information and Event Management (SIEM) solutions, enabling the detection of LOTL attacks such as reverse shells through machine learning. Leveraging real-world threat intelligence and adversarial training, our framework synthesizes diverse malicious datasets while preserving the variability of legitimate activity, ensuring high accuracy and low false-positive rates. We validate our approach through extensive experiments on enterprise-scale datasets, achieving a 90\% improvement in detection rates over non-augmented baselines at an industry-grade False Positive Rate (FPR) of $10^{-5}$. We define black-box data-driven attacks that successfully evade unprotected models, and develop defenses to mitigate them, producing adversarially robust variants of ML models. Ethical considerations are central to this work; we discuss safeguards for synthetic data generation and the responsible release of pre-trained models across four best performing architectures, including both adversarially and regularly trained variants: https://huggingface.co/dtrizna/quasarnix. Furthermore, we provide a malicious LOTL dataset containing over 1 million augmented attack variants to enable reproducible research and community collaboration: https://huggingface.co/datasets/dtrizna/QuasarNix. This work offers a reproducible, scalable, and production-ready defense against evolving LOTL threats.


翻译:暂无翻译

1
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员