The security of code based constructions is usually assessed by Information Set Decoding (ISD) algorithms. In the quantum setting, amplitude amplification yields an asymptotic square root gain over the classical analogue. However, it is still unclear whether a real quantum circuit could yield actual improvements or suffer an enormous overhead due to its implementation. This leads to different considerations of these quantum attacks in the security analysis of code based proposals. In this work we clarify this doubt by giving the first quantum circuit design of the fully-fledged ISD procedure, an implementation in the quantum simulation library Qibo as well as precise estimates of its complexities. We show that against common belief, Prange's ISD algorithm can be implemented rather efficiently on a quantum computer, namely with only a logarithmic overhead in circuit depth compared to a classical implementation. As another major contribution, we leverage the idea of classical co-processors to design hybrid classical-quantum trade-offs, that allow to tailor the necessary qubits to any available amount, while still providing quantum speedups. Interestingly, when constraining the width of the circuit instead of its depth we are able to overcome previous optimality results on constraint quantum search.


翻译:以代码为基础的构造的安全性通常由“ 信息元件” 解码算法( ISD) 来评估。 在量子设置中, 振幅放大会给古典类比带来无症状的平方根增益。 但是, 仍然不清楚的是, 真正的量子电路能否带来实际的改进, 或因其实施而承受巨大的间接费用。 这导致在基于代码的建议书的安全性分析中对这些量子攻击的不同考虑。 在这项工作中, 我们通过给出成熟的 ISD 程序的第一次量子电路设计、 量子模拟库Qibo 的实施以及对其复杂性的精确估计来澄清这一疑问。 我们表明, 与共同的信念相反, 与典型的实施相比, Prange 的 ISD 算法可以相当有效地在量子计算机上实施, 也就是说, 在电路深度上只有对数式的电路顶部, 才能与经典的实施相比。 作为另一个重要的贡献, 我们利用经典的共处理器的想法来设计混合的古典- 分子交易, 能够根据任何可用的数量来调整必要的量, 同时提供量加速。 。 。 。 有趣的加速, 当限制电路段宽度而不是深度的深度搜索时, 我们能够克服先前的最佳程度 。

0
下载
关闭预览

相关内容

【Google】梯度下降,48页ppt
专知会员服务
81+阅读 · 2020年12月5日
一份简单《图神经网络》教程,28页ppt
专知会员服务
125+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Quantum Lazy Training
Arxiv
0+阅读 · 2022年2月16日
Arxiv
0+阅读 · 2022年2月16日
Arxiv
0+阅读 · 2022年2月16日
Arxiv
0+阅读 · 2022年2月15日
Arxiv
0+阅读 · 2022年2月14日
Arxiv
0+阅读 · 2022年2月10日
Arxiv
4+阅读 · 2018年4月30日
VIP会员
相关VIP内容
【Google】梯度下降,48页ppt
专知会员服务
81+阅读 · 2020年12月5日
一份简单《图神经网络》教程,28页ppt
专知会员服务
125+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
相关论文
Quantum Lazy Training
Arxiv
0+阅读 · 2022年2月16日
Arxiv
0+阅读 · 2022年2月16日
Arxiv
0+阅读 · 2022年2月16日
Arxiv
0+阅读 · 2022年2月15日
Arxiv
0+阅读 · 2022年2月14日
Arxiv
0+阅读 · 2022年2月10日
Arxiv
4+阅读 · 2018年4月30日
Top
微信扫码咨询专知VIP会员