This paper is concerned with the asymptotic behavior in $\beta$-H\"older spaces and under $L^p$ losses of a Dirichlet kernel density estimator introduced by Aitchison & Lauder (1985) and studied theoretically by Ouimet & Tolosana-Delgado (2021). It is shown that the estimator is minimax when $p \in [1, 3)$ and $\beta \in (0, 2]$, and that it is never minimax when $p \in [4, \infty)$ or $\beta \in (2, \infty)$. These results rectify in a minor way and, more importantly, extend to all dimensions those already reported in the univariate case by Bertin & Klutchnikoff (2011).
翻译:本文关注Aitchison & Lauder(1985年)提出并由Ouimet & Tolosana-Delgado(2021年)进行理论研究的Drichlet内核密度估计仪的无症状行为($\beta$-H\) older space and $\beta $(0, 2) 美元,且当美元[4,\ infty] $或 $\beta ent (2,\ infty) 美元时,该测算器从未被微小。这些结果稍有改变,更重要的是,这些结果扩大到Bertin & Klutchnikoff(2011年)已经报告的所有维度。