The rapid advances in deep generative models over the past years have led to highly {realistic media, known as deepfakes,} that are commonly indistinguishable from real to human eyes. These advances make assessing the authenticity of visual data increasingly difficult and pose a misinformation threat to the trustworthiness of visual content in general. Although recent work has shown strong detection accuracy of such deepfakes, the success largely relies on identifying frequency artifacts in the generated images, which will not yield a sustainable detection approach as generative models continue evolving and closing the gap to real images. In order to overcome this issue, we propose a novel fake detection that is designed to re-synthesize testing images and extract visual cues for detection. The re-synthesis procedure is flexible, allowing us to incorporate a series of visual tasks - we adopt super-resolution, denoising and colorization as the re-synthesis. We demonstrate the improved effectiveness, cross-GAN generalization, and robustness against perturbations of our approach in a variety of detection scenarios involving multiple generators over CelebA-HQ, FFHQ, and LSUN datasets. Source code is available at https://github.com/SSAW14/BeyondtheSpectrum.


翻译:过去几年来,深层基因模型的快速进步导致高度的(现实的)媒体,称为深假相,通常无法从真实的眼目中辨别出来。这些进步使得评估视觉数据的真实性越来越困难,对一般视觉内容的可信度构成错误的威胁。虽然最近的工作显示,这种深度假象的探测准确性很强,但成功在很大程度上依赖于确定所生成图像中的频率文物,这不会产生一种可持续的探测方法,因为基因模型继续演变,缩小到真实图像的差距。为了克服这一问题,我们建议了一种新型的假探测,目的是重新合成图像和提取视觉提示以便侦测。再合成程序是灵活的,使我们能够纳入一系列视觉任务——我们采用超级分辨率、分解和彩色作为再合成。我们展示了在CelibA-HQ、FFHHQ和LSAS数据设置的各种探测情景中的有效性、跨GAN一般化以及我们方法的坚固性,以对付对真实图像的破坏。在MebebA-HQ、MES/BERMUQ、MERMUQ和LS UNS数据代码是可用的。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
最新《Deepfakes:创造与检测》2020综述论文,36页pdf
专知会员服务
62+阅读 · 2020年5月15日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
2019热门开源机器学习项目汇总
专知
9+阅读 · 2020年1月3日
LibRec 精选:你见过最有趣的论文标题是什么?
LibRec智能推荐
4+阅读 · 2019年11月6日
人脸检测库:libfacedetection
Python程序员
15+阅读 · 2019年3月22日
LibRec 精选:近期15篇推荐系统论文
LibRec智能推荐
5+阅读 · 2019年3月5日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
Arxiv
0+阅读 · 2021年8月9日
Arxiv
6+阅读 · 2021年7月26日
Arxiv
20+阅读 · 2020年6月8日
Deep Learning for Deepfakes Creation and Detection
Arxiv
6+阅读 · 2019年9月25日
Arxiv
5+阅读 · 2018年10月4日
Video-to-Video Synthesis
Arxiv
9+阅读 · 2018年8月20日
VIP会员
相关VIP内容
专知会员服务
44+阅读 · 2020年10月31日
最新《Deepfakes:创造与检测》2020综述论文,36页pdf
专知会员服务
62+阅读 · 2020年5月15日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
2019热门开源机器学习项目汇总
专知
9+阅读 · 2020年1月3日
LibRec 精选:你见过最有趣的论文标题是什么?
LibRec智能推荐
4+阅读 · 2019年11月6日
人脸检测库:libfacedetection
Python程序员
15+阅读 · 2019年3月22日
LibRec 精选:近期15篇推荐系统论文
LibRec智能推荐
5+阅读 · 2019年3月5日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
相关论文
Arxiv
0+阅读 · 2021年8月9日
Arxiv
6+阅读 · 2021年7月26日
Arxiv
20+阅读 · 2020年6月8日
Deep Learning for Deepfakes Creation and Detection
Arxiv
6+阅读 · 2019年9月25日
Arxiv
5+阅读 · 2018年10月4日
Video-to-Video Synthesis
Arxiv
9+阅读 · 2018年8月20日
Top
微信扫码咨询专知VIP会员