Anomaly detection is a critical problem in the manufacturing industry. In many applications, images of objects to be analyzed are captured from multiple perspectives which can be exploited to improve the robustness of anomaly detection. In this work, we build upon the deep support vector data description algorithm and address multi-perspective anomaly detection using three different fusion techniques, i.e., early fusion, late fusion, and late fusion with multiple decoders. We employ different augmentation techniques with a denoising process to deal with scarce one-class data, which further improves the performance (ROC AUC $= 80\%$). Furthermore, we introduce the dices dataset, which consists of over 2000 grayscale images of falling dices from multiple perspectives, with 5\% of the images containing rare anomalies (e.g., drill holes, sawing, or scratches). We evaluate our approach on the new dices dataset using images from two different perspectives and also benchmark on the standard MNIST dataset. Extensive experiments demonstrate that our proposed {multi-perspective} approach exceeds the state-of-the-art {single-perspective anomaly detection on both the MNIST and dices datasets}. To the best of our knowledge, this is the first work that focuses on addressing multi-perspective anomaly detection in images by jointly using different perspectives together with one single objective function for anomaly detection.
翻译:异常检测是制造业的一个严重问题。 在许多应用中, 要分析的物体图像是从多个角度拍摄的, 可以用来提高异常检测的稳健性能。 在这项工作中, 我们以深度支持矢量数据描述算法为基础, 并使用三种不同的聚合技术, 即早期聚合、 延迟聚合和以多个解剖器进行晚融合, 解决多视点异常检测。 我们使用不同的增强技术, 处理稀缺的单级数据, 这会进一步提高性能( ROC ACUC=80美元 ) 。 此外, 我们引入 dices 数据集, 由2000年以上从多个角度下降骰子的灰度图像组成, 5 ⁇ 图像包含稀有的异常( 如钻孔、 锯断或刮)。 我们使用两种不同视角的图像来评估我们对新的 dices 数据集的处理方法, 并同时对标准的 MNIST 数据集进行基准。 广泛的实验表明, 我们提议的 { { 多视点 } 方法超过了州级检测目标的图像的图像, 和 双向 DNA检测结果, 双向