We describe our two-stage system for the Multi-lingual Information Access (MIA) 2022 Shared Task on Cross-Lingual Open-Retrieval Question Answering. The first stage consists of multilingual passage retrieval with a hybrid dense and sparse retrieval strategy. The second stage consists of a reader which outputs the answer from the top passages returned by the first stage. We show the efficacy of using entity representations, sparse retrieval signals to help dense retrieval, and Fusion-in-Decoder. On the development set, we obtain 43.46 F1 on XOR-TyDi QA and 21.99 F1 on MKQA, for an average F1 score of 32.73. On the test set, we obtain 40.93 F1 on XOR-TyDi QA and 22.29 F1 on MKQA, for an average F1 score of 31.61. We improve over the official baseline by over 4 F1 points on both the development and test sets.
翻译:我们描述了我们关于跨语言开放检索问题回答的两阶段共同任务(MIA) 2022年多语言信息访问(MIA) 的两阶段系统,第一阶段是多语种通道检索,采用混合密集和稀少的检索战略,第二阶段是读器,从第一阶段返回的顶端通道中输出答案,我们展示了使用实体表示法的功效,使用稀少的检索信号帮助密集检索,以及聚合式解析。在成套开发中,我们获得了43.46 F1在XOR-Tydi QA上和21.99 F1在MKQA上的平均F1分为32.73分。在测试组中,我们获得了40.93 F1在XOR-Tydi QA上和22.29 F1在MKQA上,平均F1分为31.61分。我们在开发和测试组中比正式基线提高了4 F1分以上。