We study the computational expressivity of proof systems with fixed point operators, within the `proofs-as-programs' paradigm. We start with a calculus $\mu\mathsf{LJ}$ (due to Clairambault) that extends intuitionistic logic by least and greatest positive fixed points. Based in the sequent calculus, $\mu\mathsf{LJ}$ admits a standard extension to a `circular' calculus $\mathsf{C}\mu\mathsf{LJ}$. Our main result is that, perhaps surprisingly, both $\mu\mathsf{LJ}$ and $\mathsf{C}\mu\mathsf{LJ}$ represent the same first-order functions: those provably total in $\Pi^1_2$-$\mathsf{CA}_0$, a subsystem of second-order arithmetic beyond the `big five' of reverse mathematics and one of the strongest theories for which we have an ordinal analysis (due to Rathjen). This solves various questions in the literature on the computational strength of (circular) proof systems with fixed points. For the lower bound we give a realisability interpretation from an extension of Peano Arithmetic by fixed points that has been shown to be arithmetically equivalent to $\Pi^1_2$-$\mathsf{CA}_0$ (due to M\"ollerfeld). For the upper bound we construct a novel computability model in order to give a totality argument for circular proofs with fixed points. In fact we formalise this argument itself within $\Pi^1_2$-$\mathsf{CA}_0$ in order to obtain the tight bounds we are after. Along the way we develop some novel reverse mathematics for the Knaster-Tarski fixed point theorem.


翻译:我们在“ 校对” 范式中研究使用固定点运算符的校验系统的计算清晰度。 我们从计算单位$\ mu\ mathsf{LJ} 开始( 由于 clairambault ) 以最小和最大正值固定点延伸直觉逻辑。 以序列计算器为基础, $\ mu\ mathsf{LJ} 允许将“ 直角” 计算器系统的标准扩展为 $\ mathsf{ {C<unk> mu\ mathsf{LJ} 。 我们的主要结果是, 也许令人惊讶的是, $\ mu\ mathsf{LJ} 和 $\ maths final 逻辑以最小的固定点延伸逻辑。 以 $\ pearma_ 2$\\\ math settlexx= max maxx max maxx max max max max maxx max max mailalalalalalalalalalalalalalal sual sualal sual sualsal mais mais max max max max max max maxxxxxxxxxxxxxxxxxxx roxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxalxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx</s>

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
123+阅读 · 2020年9月8日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
57+阅读 · 2022年1月5日
Arxiv
10+阅读 · 2021年11月3日
Arxiv
15+阅读 · 2021年2月19日
VIP会员
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员