We consider the inverse problem of recovering the probability distribution function of $T_2$ relaxation times from NMR transverse relaxometry experiments. This problem is a variant of the inverse Laplace transform and hence ill-posed. We cast this within the framework of a Gaussian mixture model to obtain a least-square problem with an $L_2$ regularization term. We propose a new method for incorporating regularization into the solution; rather than seeking to replace the native problem with a suitable mathematically close, regularized, version, we instead augment the native formulation with regularization. We term this new approach 'multi-regularization'; it avoids the treacherous process of selecting a single best regularization parameter $\lambda$ and instead permits incorporation of several degrees of regularization into the solution. We illustrate the method with extensive simulation results as well as application to real experimental data.
翻译:我们考虑了从NMR反向放松实验中恢复2美元放松时间的概率分布函数的反面问题。 这个问题是逆拉普特变换的变种, 因而是错误的。 我们把它置于高斯混合模型的框架之内, 以便用2美元的固定化术语获得最差的问题。 我们提出了一个将正规化纳入解决方案的新方法; 我们不试图用一个适当的数学接近、正规化版本来取代本地问题, 而是用正规化来增加本地配方。 我们用这个新方法来形容“ 多常规化 ” ; 它避免了选择单一最佳正规化参数$\ lambda$, 而不是允许将不同程度的正规化纳入解决方案的隐秘过程。 我们用广泛的模拟结果以及实际实验数据来说明该方法。