After constructing a deep neural network for urban sound classification, this work focuses on the sensitive application of assisting drivers suffering from hearing loss. As such, clear etiology justifying and interpreting model predictions comprise a strong requirement. To this end, we used two different representations of audio signals, i.e. Mel and constant-Q spectrograms, while the decisions made by the deep neural network are explained via layer-wise relevance propagation. At the same time, frequency content assigned with high relevance in both feature sets, indicates extremely discriminative information characterizing the present classification task. Overall, we present an explainable AI framework for understanding deep urban sound classification.
翻译:在为城市健全分类建造了深层神经网络之后,这项工作的重点是敏感地应用协助听力损失的驾驶员。因此,明确的病理学证明和解释模型预测包含一个强烈的要求。为此目的,我们使用了两种不同的音频信号表达方式,即Mel和恒定光谱,而深层神经网络所作的决定则通过分层相关性传播加以解释。同时,两种特征组中具有高度相关性的频率内容表明当前分类任务具有极为歧视性的特点。总体而言,我们提出了一个理解深度城市健全分类的可解释的AI框架。