Handling missing values plays an important role in the analysis of survival data, especially, the ones marked by cure fraction. In this paper, we discuss the properties and implementation of stochastic approximations to the expectation-maximization (EM) algorithm to obtain maximum likelihood (ML) type estimates in situations where missing data arise naturally due to right censoring and a proportion of individuals are immune to the event of interest. A flexible family of three parameter exponentiated-Weibull (EW) distributions is assumed to characterize lifetimes of the non-immune individuals as it accommodates both monotone (increasing and decreasing) and non-monotone (unimodal and bathtub) hazard functions. To evaluate the performance of the SEM algorithm, an extensive simulation study is carried out under various parameter settings. Using likelihood ratio test we also carry out model discrimination within the EW family of distributions. Furthermore, we study the robustness of the SEM algorithm with respect to outliers and algorithm starting values. Few scenarios where stochastic EM (SEM) algorithm outperforms the well-studied EM algorithm are also examined in the given context. For further demonstration, a real survival data on cutaneous melanoma is analyzed using the proposed cure rate model with EW lifetime distribution and the proposed estimation technique. Through this data, we illustrate the applicability of the likelihood ratio test towards rejecting several well-known lifetime distributions that are nested within the wider class of EW distributions.


翻译:处理缺失值在分析生存数据中起着重要作用, 特别是以治愈分数为标志的值。 在本文中, 我们讨论与预期- 最大化( EM) 危险功能相匹配的随机近似值的属性和实施。 为了评估SEM 算法的性能, 在不同参数设置下进行广泛的模拟研究, 利用可能性比测试, 我们还在EW 分布的家族中进行模型歧视。 此外, 我们研究SEM 算法在外端值和算法起始值方面的强度。 很少有人知道非模拟个人在满足单质( 增减) 和非摩托内( 单式和 浴) 危险功能时的寿命周期性近近近效值。 为了评估SEM 算法的性能, 在各种参数设置下进行广泛的模拟研究。 我们还利用可能性比值测试, 在分布时进行模型- 和算法的起始值 值 。 已知的EM EM ( SEM) 算法比得更精确的周期性分布, 也用真实的缩算法分析 。

0
下载
关闭预览

相关内容

SEM 是 Search Engine Marketing 的缩写,中文意思是搜索引擎营销。SEM 是一种新的网络营销形式。SEM 所做的就是全面而有效的利用搜索引擎来进行网络营销和推广。SEM 追求最高的性价比,以最小的投入,获最大的来自搜索引擎的访问量,并产生商业价值。
【干货书】贝叶斯推断随机过程,449页pdf
专知会员服务
152+阅读 · 2020年8月27日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
A spatially adaptive phase-field model of fracture
Arxiv
0+阅读 · 2021年9月21日
VIP会员
相关VIP内容
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员