The nonconforming Morley-type virtual element method for the incompressible Navier-Stokes equations formulated in terms of the stream-function on simply connected polygonal domains (not necessarily convex) is designed. A rigorous analysis by using a new enriching operator is developed. More precisely, by employing such operator, we provide novel discrete Sobolev embeddings, which allow to establish the well-posedness of the discrete scheme and obtain optimal error estimates in broken $H^2$-, $H^1$- and $L^2$-norms under minimal regularity condition on the weak solution. The velocity and vorticity fields are recovered via a postprocessing formulas. Furthermore, a new algorithm for pressure recovery based on a Stokes complex sequence is presented. Optimal error estimates are obtained for all the postprocessed variables. Finally, the theoretical error bounds and the good performance of the method are validated through several benchmark tests.
翻译:在简单的连接多边形域(不一定是convex)上,设计了以流函数为公式的不压缩纳维-斯托克斯方程式不兼容的Morley型虚拟元件方法。正在开发一种使用新的浓缩操作器的严格分析。更准确地说,我们通过使用这种操作器,提供了新的离散索博列夫嵌入器,从而能够确定离散方案是否稳妥,并获得以破碎的H%2美元、1美元和2美元为最优误差估计值,在薄弱的溶液中,以最低常规性条件为单位。速度和多色域是通过后处理公式回收的。此外,还提出了基于斯托克斯复杂序列的压力恢复新算法。对所有后处理的变量都获得了最佳误差估计。最后,通过若干基准测试,验证了该方法的理论误差界限和良好性能。