In an algorithmic complexity attack, a malicious party takes advantage of the worst-case behavior of an algorithm to cause denial-of-service. A prominent algorithmic complexity attack is regular expression denial-of-service (ReDoS), in which the attacker exploits a vulnerable regular expression by providing a carefully-crafted input string that triggers worst-case behavior of the matching algorithm. This paper proposes a technique for automatically finding ReDoS vulnerabilities in programs. Specifically, our approach automatically identifies vulnerable regular expressions in the program and determines whether an "evil" input string can be matched against a vulnerable regular expression. We have implemented our proposed approach in a tool called REXPLOITER and found 41 exploitable security vulnerabilities in Java web applications.


翻译:在算法复杂度攻击中,恶意方利用算法的最坏行为导致拒绝服务。一个突出的算法复杂性攻击是常规表达拒绝服务(ReDoS ), 攻击者通过提供精心设计的输入字符串来利用脆弱的正常表达方式, 触发匹配算法的最坏行为。 本文提出了一个在程序中自动发现 ReDoS 弱点的方法。 具体而言, 我们的方法自动识别程序中的脆弱常规表达方式, 并确定“ 邪恶” 输入字符串能否与脆弱的正常表达方式匹配。 我们已经在名为 REXBIPIITER 的工具中应用了我们的建议方法, 并在Java 网络应用程序中发现了41个可以利用的安全弱点 。

0
下载
关闭预览

相关内容

《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
已删除
AI掘金志
7+阅读 · 2019年7月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
20+阅读 · 2020年6月8日
Interpretable Adversarial Training for Text
Arxiv
5+阅读 · 2019年5月30日
Object Detection in 20 Years: A Survey
Arxiv
48+阅读 · 2019年5月13日
VIP会员
相关资讯
已删除
AI掘金志
7+阅读 · 2019年7月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员