The study of non-collapsing measurements was initiated by Aaronson, Bouland, Fitzsimons, and Lee, who showed that BQP, when equipped with the ability to perform non-collapsing measurements (denoted as PDQP), contains both BQP and SZK, yet still requires $\Omega (N^{1/4})$ queries to find an element in an unsorted list. By formulating an alternative equivalent model of PDQP, we prove the positive weighted adversary method, obtaining a variety of new lower bounds and establishing a trade-off between queries and non-collapsing measurements. The method allows us to examine the well-studied majority and element distinctness problems, while also tightening the bound for the search problem to $\Theta (N^{1/3})$. Additionally, we explore related settings, obtaining tight bounds in BQP with the ability to copy arbitrary states (called CBQP) and PDQP with non-adaptive queries.
翻译:暂无翻译