Estimating the prevalence of a disease is necessary for evaluating and mitigating risks of its transmission within or between populations. Estimates that consider how prevalence changes with time provide more information about these risks but are difficult to obtain due to the necessary sampling intensity and commensurate testing costs. We propose pooling and jointly testing multiple samples to reduce testing costs and use a novel nonparametric, hierarchical Bayesian model to infer population prevalence from the pooled test results. This approach is shown to reduce uncertainty compared to individual testing at the same budget and to produce similar estimates compared to individual testing at a much higher budget through two synthetic studies and two case studies of natural infection data.


翻译:估计一种疾病的流行程度对于评估和减轻其在人口内部或人口之间传播的风险是必要的; 考虑流行程度随时间而变化如何提供有关这些风险的更多资料的估计数,但由于必要的取样强度和相称的测试费用,难以获得这种资料; 我们提议汇集和联合测试多种样品,以减少测试费用,并使用一种新的非参数性的、等级分级的巴耶斯模式从综合测试结果中推断人口流行程度; 这种方法表明,与同一预算的个别测试相比,可以减少不确定性,并通过两项合成研究和两项自然感染数据案例研究,得出与个人测试相比的类似估计数,其预算要高得多。

0
下载
关闭预览

相关内容

专知会员服务
29+阅读 · 2021年8月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
机器学习速查手册,135页pdf
专知会员服务
342+阅读 · 2020年3月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
156+阅读 · 2019年10月12日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
开发者应当了解的18套机器学习平台
深度学习世界
5+阅读 · 2018年8月14日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2017年12月14日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
开发者应当了解的18套机器学习平台
深度学习世界
5+阅读 · 2018年8月14日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员