In the last decade, several studies have proposed the use of automated techniques to estimate the effort of agile software development. In this paper we perform a close replication and extension of a seminal work proposing the use of Deep Learning for agile effort estimation (namely Deep-SE), which has set the state-of-the-art since. Specifically, we replicate three of the original research questions aiming at investigating the effectiveness of Deep-SE for both within-project and cross-project effort estimation. We benchmark Deep-SE against three baseline techniques (i.e., Random, Mean and Median effort prediction) and a previously proposed method to estimate agile software project development effort (dubbed TF/IDF-SE), as done in the original study. To this end, we use both the data from the original study and a new larger dataset of 31,960 issues, which we mined from 29 open-source projects. Using more data allows us to strengthen our confidence in the results and further mitigate the threat to the external validity of the study. We also extend the original study by investigating two additional research questions. One evaluates the accuracy of Deep-SE when the training set is augmented with issues from all other projects available in the repository at the time of estimation, and the other examines whether an expensive pre-training step used by the original Deep-SE, has any beneficial effect on its accuracy and convergence speed. The results of our replication show that Deep-SE outperforms the Median baseline estimator and TF/IDF-SE in only very few cases with statistical significance (8/42 and 9/32 cases, respectively), thus confounding previous findings on the efficacy of Deep-SE. The two additional RQs revealed that neither augmenting the training set nor pre-training Deep-SE play a role in improving its accuracy and convergence speed. ...


翻译:在过去十年中,一些研究提议使用自动化技术来估计软件开发的灵活度。在本文件中,我们像最初的研究一样,对一项开创性工作(深研计划)进行密切复制和扩展,提议使用深研计划来进行敏化的努力估算(深研计划),从而确立了自那以来的最新水平。具体地说,我们复制了三个原始研究问题,目的是调查深研计划在项目内部和跨项目努力估算方面的有效性。我们用三种基线技术(即随机、中、中、中、中)以及先前提出的一种方法来估计软件开发工作的灵活度(深研计划/IDF-SE),建议采用深研计划来进行弹性的工作估算(深研计划深研计划),建议采用深研计划(深研计划)的精度估算(深研计划),提出31,960个问题的新增数据集,我们从29个开源前项目中提取了这些数据。我们利用更多的数据,可以加强我们对结果的信心,进一步减轻对外部有效性的威胁。我们还通过调查另外两个研究问题来扩大初始研究。在深研订计划(深研订计划)中评估深深深研的精度准确度准确度准确度的准确度的准确度的精确度的精确度,而精度的精度的精确度,在评估中,从以前的精度的精度的精度的精度的精度的精度分析结果显示的精度上,从以前的精度显示的精度显示的精度显示的精度显示的精度显示的精度显示的精度显示的精度,从以前的精度显示的精度显示的精度显示的精度,而不是从以前的精度,从以前的精度显示的精度,从以前的精度显示之前的精度的精度的精度的精度的精度的精度的精度的精度的精度显示的精度,从以前的精度,从以前的精度显示的精度显示的精度的精度的精度显示的精度显示的精度的精度的精度的精度的精度的精度显示的精度,从以前的精度显示的精度显示的精度的精度,从以前的精度,从以前的精度,从以前的精度,从以前的精度显示的精度显示的精度显示的精度

0
下载
关闭预览

相关内容

专知会员服务
124+阅读 · 2020年9月8日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
27+阅读 · 2020年12月24日
Learning from Few Samples: A Survey
Arxiv
77+阅读 · 2020年7月30日
VIP会员
相关VIP内容
专知会员服务
124+阅读 · 2020年9月8日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员