Autoregressive generative models can estimate complex continuous data distributions, like trajectory rollouts in an RL environment, image intensities, and audio. Most state-of-the-art models discretize continuous data into several bins and use categorical distributions over the bins to approximate the continuous data distribution. The advantage is that the categorical distribution can easily express multiple modes and are straightforward to optimize. However, such approximation cannot express sharp changes in density without using significantly more bins, making it parameter inefficient. We propose an efficient, expressive, multimodal parameterization called Adaptive Categorical Discretization (AdaCat). AdaCat discretizes each dimension of an autoregressive model adaptively, which allows the model to allocate density to fine intervals of interest, improving parameter efficiency. AdaCat generalizes both categoricals and quantile-based regression. AdaCat is a simple add-on to any discretization-based distribution estimator. In experiments, AdaCat improves density estimation for real-world tabular data, images, audio, and trajectories, and improves planning in model-based offline RL.
翻译:自动递减基因模型可以估计复杂的连续数据分布,如RL环境中的轨迹滚动、图像强度和音频。 大多数最先进的模型将连续数据分解到几个文件夹中,并在文件夹上使用绝对分布以近似连续数据分布。 优点是,绝对分布可以很容易地表达多种模式,并且可以最简单地优化。 然而,这种近距离模型不能显示密度的急剧变化,而不使用更多的文件夹,使其参数效率低下。 我们提议一个高效的、显式的、多式参数化,称为适应性分类分解(AdaCat) 。 AdaCat 将自动递减模型的每个维度都分解到多个文件夹中,使该模型能够将密度分配到精细的间隔,提高参数效率。 AdaCat 将绝对值和基于量基回归的回归法普遍化。 AdaCat 是任何离散分布估计器的一个简单的附加点。 在实验中, AdaCat 改进基于真实世界列表数据、图像、音频和轨的密度估计,并改进模型的规划。