We consider an underdetermined noisy linear regression model where the minimum-norm interpolating predictor is known to be consistent, and ask: can uniform convergence in a norm ball, or at least (following Nagarajan and Kolter) the subset of a norm ball that the algorithm selects on a typical input set, explain this success? We show that uniformly bounding the difference between empirical and population errors cannot show any learning in the norm ball, and cannot show consistency for any set, even one depending on the exact algorithm and distribution. But we argue we can explain the consistency of the minimal-norm interpolator with a slightly weaker, yet standard, notion: uniform convergence of zero-error predictors in a norm ball. We use this to bound the generalization error of low- (but not minimal-) norm interpolating predictors.


翻译:我们认为,一个不下定的噪音线性回归模型是已知最低北向内插预测器一致的,我们问:在标准球中,或者至少(在纳加拉詹和科尔特之后)算法在典型输入集中选择的规范球子集中,能够统一趋同,解释这一成功吗?我们表明,将经验错误和人口错误的区别统一地捆绑在标准球中不能显示任何经验错误和人口错误之间的任何学习,也不能显示任何组合的一致性,即使是取决于精确的算法和分布的组合。但我们认为,我们可以解释最小北向内插器与一个稍弱但标准的概念的一致性:规范球中零危险预测器的统一趋同。我们用这个来约束低(但非最低)规范内插预测器的普遍错误。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
159+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年1月14日
Arxiv
7+阅读 · 2019年5月31日
Arxiv
3+阅读 · 2018年10月5日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
159+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员