We propose Preferential MoE, a novel human-ML mixture-of-experts model that augments human expertise in decision making with a data-based classifier only when necessary for predictive performance. Our model exhibits an interpretable gating function that provides information on when human rules should be followed or avoided. The gating function is maximized for using human-based rules, and classification errors are minimized. We propose solving a coupled multi-objective problem with convex subproblems. We develop approximate algorithms and study their performance and convergence. Finally, we demonstrate the utility of Preferential MoE on two clinical applications for the treatment of Human Immunodeficiency Virus (HIV) and management of Major Depressive Disorder (MDD).
翻译:我们建议优先教育部,这是一个新的人类-ML混合专家模式,它只对预测性性能有必要时才与基于数据的分类员一起增加决策方面的人类专门知识。我们的模型展示了一种可解释的格子功能,它能提供关于何时应当遵守或避免遵守或避免人类规则的信息。在使用基于人类的规则时,定格功能是最大化的,分类错误最小化。我们建议用共性子问题解决一个结合的多目标问题。我们开发了近似算法并研究其性能和趋同性。最后,我们展示了在治疗人体免疫机能丧失病毒(艾滋病毒)和管理重大抑郁症(MDD)的两个临床应用中,优选模模的效用。