We analyse a numerical scheme for a system arising from a novel description of the standard elastic--perfectly plastic response. The elastic--perfectly plastic response is described via rate-type equations that do not make use of the standard elastic-plastic decomposition, and the model does not require the use of variational inequalities. Furthermore, the model naturally includes the evolution equation for temperature. We present a low order discretisation based on the finite element method. Under certain restrictions on the mesh we subsequently prove the existence of discrete solutions, and we discuss the stability properties of the numerical scheme. The analysis is supplemented with computational examples.
翻译:我们分析一个因对标准的弹性-完美塑料反应进行新描述而形成的系统的数字方案。弹性-完美塑料反应是通过不使用标准的弹性-塑料分解的速率型方程式描述的,模型不需要使用变异不平等。此外,模型自然包括温度的进化方程式。我们根据有限元素方法提出低顺序分解。根据对网格的某些限制,我们随后证明存在离散的解决方案,我们讨论数字法的稳定性。分析用计算示例加以补充。