Stairs are common building structures in urban environments, and stair detection is an important part of environment perception for autonomous mobile robots. Most existing algorithms have difficulty combining the visual information from binocular sensors effectively and ensuring reliable detection at night and in the case of extremely fuzzy visual clues. To solve these problems, we propose a neural network architecture with RGB and depth map inputs. Specifically, we design a selective module, which can make the network learn the complementary relationship between the RGB map and the depth map and effectively combine the information from the RGB map and the depth map in different scenes. In addition, we design a line clustering algorithm for the postprocessing of detection results, which can make full use of the detection results to obtain the geometric stair parameters. Experiments on our dataset show that our method can achieve better accuracy and recall compared with existing state-of-the-art deep learning methods, which are 5.64% and 7.97%, respectively, and our method also has extremely fast detection speed. A lightweight version can achieve 300 + frames per second with the same resolution, which can meet the needs of most real-time detection scenes.
翻译:台阶是城市环境中常见的建筑结构,楼梯探测是自主移动机器人环境感知的一个重要部分。 大多数现有的算法都难以将望远镜传感器的视觉信息有效结合起来,确保晚上和在极模糊的视觉线索中进行可靠的探测。 为了解决这些问题,我们建议使用RGB和深度地图输入器来建造神经网络结构。 具体地说, 我们设计了一个选择性模块, 使网络能够学习RGB地图和深度地图之间的互补关系, 并有效地将RGB地图和深度地图在不同场景中的信息结合起来。 此外, 我们为检测结果后处理设计了一条线路组合算法, 它可以充分利用探测结果以获得几何楼梯参数。 我们的数据集实验显示, 我们的方法可以实现更好的准确性和回忆, 与现有的最先进的深层学习方法相比, 分别为5.64%和7.97%, 我们的方法也具有极快的探测速度。 轻量版本可以达到每秒300+框架, 而同一分辨率可以满足最实时探测场景的需要。