Deep convolutional image classifiers progressively transform the spatial variability into a smaller number of channels, which linearly separates all classes. A fundamental challenge is to understand the role of rectifiers together with convolutional filters in this transformation. Rectifiers with biases are often interpreted as thresholding operators which improve sparsity and discrimination. This paper demonstrates that it is a different phase collapse mechanism which explains the ability to progressively eliminate spatial variability, while improving linear class separation. This is explained and shown numerically by defining a simplified complex-valued convolutional network architecture. It implements spatial convolutions with wavelet filters and uses a complex modulus to collapse phase variables. This phase collapse network reaches the classification accuracy of ResNets of similar depths, whereas its performance is considerably degraded when replacing the phase collapse with thresholding operators. This is justified by explaining how iterated phase collapses progressively improve separation of class means, as opposed to thresholding non-linearities.
翻译:深相相形图像分类器逐渐将空间变异性转化成数量较少的渠道,这些渠道将所有类别都线性地分开。一个基本的挑战是如何理解纠正器与进化过滤器在这种转变中的作用。 带有偏差的校正器往往被解释为临界操作器,它们能提高偏差和歧视。 本文表明,这是一个不同的阶段崩溃机制,它可以解释逐步消除空间变异性的能力,同时改进线性分类。 通过界定一个简化的复杂估价的进化网络结构来从数字上解释和显示这一点。 它用波盘过滤器来实施空间变异, 并使用复杂的模量来进行崩溃阶段变异。 这一阶段的崩溃网络达到了类似深度的ResNet的分类精度, 而当用临界操作器取代阶段崩溃时,其性能被大大削弱。 解释它化的阶段崩溃是如何逐步改善等级手段的分化,而不是临界非线性,是有道理的。