In this paper, we introduce the new problem of extracting fine-grained traffic information from Twitter streams by also making publicly available the two (constructed) traffic-related datasets from Belgium and the Brussels capital region. In particular, we experiment with several models to identify (i) whether a tweet is traffic-related or not, and (ii) in the case that the tweet is traffic-related to identify more fine-grained information regarding the event (e.g., the type of the event, where the event happened). To do so, we frame (i) the problem of identifying whether a tweet is a traffic-related event or not as a text classification subtask, and (ii) the problem of identifying more fine-grained traffic-related information as a slot filling subtask, where fine-grained information (e.g., where an event has happened) is represented as a slot/entity of a particular type. We propose the use of several methods that process the two subtasks either separately or in a joint setting, and we evaluate the effectiveness of the proposed methods for solving the traffic event detection problem. Experimental results indicate that the proposed architectures achieve high performance scores (i.e., more than 95% in terms of F$_{1}$ score) on the constructed datasets for both of the subtasks (i.e., text classification and slot filling) even in a transfer learning scenario. In addition, by incorporating tweet-level information in each of the tokens comprising the tweet (for the BERT-based model) can lead to a performance improvement for the joint setting.


翻译:在本文中,我们提出从Twitter流中提取微小流量信息的新问题,方法是公布比利时和布鲁塞尔首都地区的两个(构筑的)与交通有关的数据集。特别是,我们实验了几个模型,以确定:(一) 微博是否与交通相关;(二) 微博是否与交通相关;(二) 微博是否与交通相关,以确定与交通相关的更多信息(例如,事件类型,事件发生地点)。为此,我们设定了(一) 微博是否与交通相关事件相关,或是否作为文本标识类子任务分类;(二) 确定与交通有关的信息是否更为精细化;(一) 微博是否与交通相关;(二) 如何将更多微小信息确定为填补子任务中的空档(例如,发生事件) 微小信息是特定类型的一个时段/时间段/时间段/时间。我们提议采用几种方法,分别处理两个子任务,或在一个联合设置中进行分类,我们评估拟议用于解决价格相关事件平整数(ax) 水平的进度结构中,即实验结果显示每平分数的进度的进度。

1
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
【泡泡图灵智库】Detect-SLAM:目标检测和SLAM相互收益
泡泡机器人SLAM
14+阅读 · 2019年6月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
综述 | 事件抽取及推理 (上)
开放知识图谱
87+阅读 · 2019年1月9日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Towards Text-based Phishing Detection
Arxiv
0+阅读 · 2021年11月3日
Rapid Customization for Event Extraction
Arxiv
7+阅读 · 2018年9月20日
Arxiv
10+阅读 · 2017年7月4日
VIP会员
相关VIP内容
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
【泡泡图灵智库】Detect-SLAM:目标检测和SLAM相互收益
泡泡机器人SLAM
14+阅读 · 2019年6月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
综述 | 事件抽取及推理 (上)
开放知识图谱
87+阅读 · 2019年1月9日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Top
微信扫码咨询专知VIP会员