Inspired by human visual attention, we propose a novel inverse reinforcement learning formulation using Maximum Entropy Deep Inverse Reinforcement Learning (MEDIRL) for predicting the visual attention of drivers in accident-prone situations. MEDIRL predicts fixation locations that lead to maximal rewards by learning a task-sensitive reward function from eye fixation patterns recorded from attentive drivers. Additionally, we introduce EyeCar, a new driver attention dataset in accident-prone situations. We conduct comprehensive experiments to evaluate our proposed model on three common benchmarks: (DR(eye)VE, BDD-A, DADA-2000), and our EyeCar dataset. Results indicate that MEDIRL outperforms existing models for predicting attention and achieves state-of-the-art performance. We present extensive ablation studies to provide more insights into different features of our proposed model.
翻译:在人类视觉关注的启发下,我们提出一个新的反向强化学习配方,使用最大负向深反向强化学习(MEDIRL)来预测事故易发情况下驾驶员的视觉关注;MEDIRL预测固定地点,通过学习从关注驾驶员记录到的视视固模式中获取对任务敏感的奖励功能,从而获得最大回报;此外,我们介绍在事故易发情况下的一个新的驱动器关注数据集EyeCar;我们进行全面实验,评估我们关于三个共同基准(DR(Eye)VE、BDD-A、DAD-2000)和EyeCar数据集的拟议模式。结果显示,MEDIRL优于现有模型,以预测关注并实现最新业绩。我们提出了广泛的反向研究,以提供对我们拟议模型不同特征的更多见解。