Let $\Omega$ be a Lipschitz polyhedral (can be nonconvex) domain in $\mathbb{R}^{3}$, and $V_{h}$ denotes the finite element space of continuous piecewise linear polynomials. On non-obtuse quasi-uniform tetrahedral meshes, we prove that the finite element projection $R_{h}u$ of $u \in H^{1}(\Omega) \cap C(\overline{\Omega})$ (with $R_{h} u$ interpolating $u$ at the boundary nodes) satisfies \begin{align*} \Vert R_{h} u\Vert_{L^{\infty}(\Omega)} \leq C \vert \log h \vert \Vert u\Vert_{L^{\infty}(\Omega)}. \end{align*} If we further assume $u \in W^{1,\infty}(\Omega)$, then \begin{align*} \Vert R_{h} u\Vert_{W^{1, \infty}(\Omega)} \leq C \vert \log h \vert \Vert u\Vert_{W^{1, \infty}(\Omega)}. \end{align*}
翻译:$\ offega$\ lipschitz monhedral (可以是非colvex) 域 $\ mathbb{R}3} $, $V ⁇ h} 美元表示连续片状线性多面体的有限元素空间。 在非显性准单式四面色色( Omega) 上, 我们证明 有限元素投影 $R ⁇ h} $u\ vleg leg h\ vort u\ vert u\ vert u\ Vert} (\ vreg) c ($_ overline\\ Omega}) $ (${h} 在边界节点上对美元进行内插 $) 满足\ begin{ {align\ { \ vertr} u\ Vert\\\ {u\ \\\\\\\\ ire} 1,\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\