In recent years, motivated by computational purposes, the singular value and spectral features of the symmetrization of Toeplitz matrices generated by a Lebesgue integrable function have been studied. Indeed, under the assumptions that $f$ belongs to $L^1([-\pi,\pi])$ and it has real Fourier coefficients, the spectral and singular value distribution of the matrix-sequence $\{Y_nT_n[f]\}_n$ has been identified, where $n$ is the matrix-size, $Y_n$ is the anti-identity matrix, and $T_n[f]$ is the Toeplitz matrix generated by $f$. In this note, we consider the multilevel Toeplitz matrix $T_{\bf n}[f]$ generated by $f\in L^1([-\pi,\pi]^k)$, $\bf n$ being a multi-index identifying the matrix-size, and we prove spectral and singular value distribution results for the matrix-sequence $\{Y_{\bf n}T_{\bf n}[f]\}_{\bf n}$ with $Y_{\bf n}$ being the corresponding tensorization of the anti-identity matrix.


翻译:近年来,基于计算的目的,对由Lebesgue不可磨损的函数产生的Toeplitz矩阵的相配值和光谱特征进行了研究,实际上,根据美元属于$1 ([-\pi,\pi]美元和美元具有真实的Fourier系数的假设,确定了Teplitz 矩阵序列$Y_n_n_n[f]}的光谱和单值分布,其中美元是矩阵大小,Y_n美元是反身份矩阵,而$T_n[f]美元是美元产生的Teplitz 矩阵。在本说明中,我们考虑由美元生成的多级Teplitz 矩阵 $T ⁇ bf n}美元([-\pi,\pi}k]美元产生的多级Teplitz 矩阵的光谱和单值分布,这是确定矩阵大小的多指数,我们证明该矩阵的光谱和单值分布结果为nf_____________________n______________n___xx__________________xxxxxxn____________________xxxxxxxxxxxxxxxxxxxxxxxxxx_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
83+阅读 · 2020年5月16日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
已删除
将门创投
4+阅读 · 2018年5月31日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
The Discrepancy of Random Rectangular Matrices
Arxiv
0+阅读 · 2021年1月11日
Arxiv
0+阅读 · 2021年1月10日
Arxiv
0+阅读 · 2021年1月9日
Arxiv
0+阅读 · 2021年1月7日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关资讯
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
已删除
将门创投
4+阅读 · 2018年5月31日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员