In recent years, motivated by computational purposes, the singular value and spectral features of the symmetrization of Toeplitz matrices generated by a Lebesgue integrable function have been studied. Indeed, under the assumptions that $f$ belongs to $L^1([-\pi,\pi])$ and it has real Fourier coefficients, the spectral and singular value distribution of the matrix-sequence $\{Y_nT_n[f]\}_n$ has been identified, where $n$ is the matrix-size, $Y_n$ is the anti-identity matrix, and $T_n[f]$ is the Toeplitz matrix generated by $f$. In this note, we consider the multilevel Toeplitz matrix $T_{\bf n}[f]$ generated by $f\in L^1([-\pi,\pi]^k)$, $\bf n$ being a multi-index identifying the matrix-size, and we prove spectral and singular value distribution results for the matrix-sequence $\{Y_{\bf n}T_{\bf n}[f]\}_{\bf n}$ with $Y_{\bf n}$ being the corresponding tensorization of the anti-identity matrix.
翻译:近年来,基于计算的目的,对由Lebesgue不可磨损的函数产生的Toeplitz矩阵的相配值和光谱特征进行了研究,实际上,根据美元属于$1 ([-\pi,\pi]美元和美元具有真实的Fourier系数的假设,确定了Teplitz 矩阵序列$Y_n_n_n[f]}的光谱和单值分布,其中美元是矩阵大小,Y_n美元是反身份矩阵,而$T_n[f]美元是美元产生的Teplitz 矩阵。在本说明中,我们考虑由美元生成的多级Teplitz 矩阵 $T ⁇ bf n}美元([-\pi,\pi}k]美元产生的多级Teplitz 矩阵的光谱和单值分布,这是确定矩阵大小的多指数,我们证明该矩阵的光谱和单值分布结果为nf_____________________n______________n___xx__________________xxxxxxn____________________xxxxxxxxxxxxxxxxxxxxxxxxxx_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx