In this paper, we propose physics-informed neural operators (PINO) that uses available data and/or physics constraints to learn the solution operator of a family of parametric Partial Differential Equation (PDE). This hybrid approach allows PINO to overcome the limitations of purely data-driven and physics-based methods. For instance, data-driven methods fail to learn when data is of limited quantity and/or quality, and physics-based approaches fail to optimize on challenging PDE constraints. By combining both data and PDE constraints, PINO overcomes all these challenges. Additionally, a unique property that PINO enjoys over other hybrid learning methods is its ability to incorporate data and PDE constraints at different resolutions. This allows us to combine coarse-resolution data, which is inexpensive to obtain from numerical solvers, with higher resolution PDE constraints, and the resulting PINO has no degradation in accuracy even on high-resolution test instances. This discretization-invariance property in PINO is due to neural-operator framework which learns mappings between function spaces and allows evaluation at different resolutions without the need for re-training. Moreover, PINO succeeds in the purely physics setting, where no data is available, while other approaches such as the Physics-Informed Neural Network (PINN) fail due to optimization challenges, e.g. in multi-scale dynamic systems such as Kolmogorov flows. This is because PINO learns the solution operator by optimizing PDE constraints on multiple instances while PINN optimizes PDE constraints of a single PDE instance. Further, in PINO, we incorporate the Fourier neural operator (FNO) architecture which achieves orders-of-magnitude speedup over numerical solvers and also allows us to compute explicit gradients on function spaces efficiently.


翻译:在本文中,我们建议使用现有数据和/或物理限制的物理知情神经操作员(PINO)使用现有数据和/或物理限制来学习模拟部分差异方程(PDE)的解决方案操作员。这种混合方法使PINO能够克服纯数据驱动和物理基础方法的局限性。例如,当数据数量和/或质量有限时,数据驱动方法无法学习,而物理基础方法无法最佳地克服PDE的限制。通过将数据与PDE制约结合起来,PINO克服了所有这些挑战。此外,PINO在其他混合学习方法中享有的独特属性是它能够将数据和PDE限制纳入不同分辨率组的解决方案操作员。这使我们能够将从数字解决方案中获得的低廉的GOIS数据与PDE限制结合起来。因此,PINOI在高分辨率测试中不会降低准确性。PINOI的这种离散性-不均匀性属性是用来学习功能空间之间的绘图和允许对不同分辨率的评估,而无需再加固化的运行者则可以使用PI- 。此外, PNOI 将数据运行者将数据流转化为系统进行更精确的运行,因为SFILILI 的系统会进行更精确的运行,而无法再升级。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
161+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
23+阅读 · 2022年2月4日
Arxiv
65+阅读 · 2021年6月18日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员