In this paper, we study the almost sure boundedness and the convergence of the stochastic approximation (SA) algorithm. At present, most available convergence proofs are based on the ODE method, and the almost sure boundedness of the iterations is an assumption and not a conclusion. In Borkar-Meyn (2000), it is shown that if the ODE has only one globally attractive equilibrium, then under additional assumptions, the iterations are bounded almost surely, and the SA algorithm converges to the desired solution. Our objective in the present paper is to provide an alternate proof of the above, based on martingale methods, which are simpler and less technical than those based on the ODE method. As a prelude, we prove a new sufficient condition for the global asymptotic stability of an ODE. Next we prove a "converse" Lyapunov theorem on the existence of a suitable Lyapunov function with a globally bounded Hessian, for a globally exponentially stable system. Both theorems are of independent interest to researchers in stability theory. Then, using these results, we provide sufficient conditions for the almost sure boundedness and the convergence of the SA algorithm. We show through examples that our theory covers some situations that are not covered by currently known results, specifically Borkar-Meyn (2000).
翻译:在本文中,我们研究了几乎可以肯定的近似(SA)算法的界限和趋同性。 目前,大多数现有的趋同证据都以ODE方法为基础,几乎可以肯定的比ODE方法更简单、技术性更小。 在Borkar-Meyn(2000年)中,我们发现,如果ODE只有一个具有全球吸引力的平衡,然后在额外的假设下,迭代几乎可以肯定,而SA算法也与理想的解决方案相融合。我们本文件的目标是提供上述方法的替代证据,其依据是martingale方法,这些方法比基于ODE方法的方法简单、技术性更低。作为前奏,我们证明,对于ODE的全球无损稳定来说,我们是一个新的充分条件。接下来我们证明,如果OD只有一个与全球受全球约束的Hessian的适合的Lyapunov函数存在,那么,这种迭代算法几乎具有全球指数稳定的系统,那么,我们的目标就是提供上述方法的替代证据。 两种词对于研究人员来说都是独立的。 然后,利用这些结果,我们用这些结果,我们证明一个新的理论可以具体地证明,我们所知道的Renal- asion 囊中包含了我们所了解的Agalalal- 。