High permeability of pervious concrete (PC) makes it a special type of concrete utilised for certain applications. However, the complexity of the behaviour and properties of PC leads to costly, time consuming and energy demanding experimental works to accurately determine the mechanical and physical properties of PC. This study presents a predictive model to predict the mechanical and physical properties of PC using Extreme Gradient Boost (XGBoost). The compressive strength, tensile strength, density and porosity of PC was predicted using four models evaluated using different statistical parameters. These statistical measures are the root mean squared error (RMSE), square of correlation coefficient (R2), mean absolute error (MAE) and mean absolute percentage error (MAPE). The estimation of these properties by the XGBoost models were in agreement with the experimental measurements. The performance of XGBoost is further validated by comparing its estimations to those obtained from four corresponding support vector regression (SVR) models. The comparison showed that XGBoost generally outperformed SVR with lower RMSE of 0.58, 0.17, 0.98 and 34.97 compared to 0.74, 0.21, 1.28 and 44.06 in SVR for compressive strength, tensile strength, porosity, and density estimation respectively. Due to high correlation between the predicted and experimentally obtained properties, the XGBoost models are able to provide quick and reliable information on the properties of PC which are experimentally costly and time consuming. A feature importance and contribution analysis of the input/predictor variables showed that the cement proportion is the most important and contributory factor in the PC properties estimated.
翻译:显性混凝土(PC)的高渗透性使它成为用于某些应用的一种特殊的混凝土(PPC),然而,PC的行为和特性的复杂性导致成本昂贵、耗时耗时和能源要求高的实验性工作,以准确确定PC的机械和物理特性。本研究提出了一个预测模型,用极端梯度推进(XGBoost)预测PC的机械和物理特性。用不同的统计参数评估了四种模型预测PC的压缩强度、抗拉强度、密度和孔隙性。这些统计措施是:根平均误差(RMSE)、相关系数(R2)的正方方位、绝对误差(MAE)和绝对百分率差(MAPE)。 XGBoost模型对这些特性的估计与实验性测量结果一致。 XGBosost的性能通过比较其估计与四个相应的支持矢量回归模型(SVR)的性能、强性能强度通常优的SMES值和性能性能的精确性能、性能性能和性能的精确性能比例,在SBV的精确性能和性能的精确性能和性能的精确性能、性能、性能、性能、性能和性能的精确性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性