The schema-guided paradigm overcomes scalability issues inherent in building task-oriented dialogue (TOD) agents with static ontologies. Instead of operating on dialogue context alone, agents have access to hierarchical schemas containing task-relevant natural language descriptions. Fine-tuned language models excel at schema-guided dialogue state tracking (DST) but are sensitive to the writing style of the schemas. We explore methods for improving the robustness of DST models. We propose a framework for generating synthetic schemas which uses tree-based ranking to jointly optimise lexical diversity and semantic faithfulness. The generalisation of strong baselines is improved when augmenting their training data with prompts generated by our framework, as demonstrated by marked improvements in average joint goal accuracy (JGA) and schema sensitivity (SS) on the SGD-X benchmark.
翻译:模式引导式范式克服了使用静态本体构建任务导向对话 (TOD) 代理时固有的可扩展性问题。代理不仅仅基于对话上下文,还可以访问包含任务相关自然语言描述的层次结构模式。经过微调的语言模型在模式引导式对话状态跟踪 (DST) 上表现出色,但对模式的书写风格非常敏感。我们探索了提高DST模型健壮性的方法。我们提出了一种生成合成模式的框架,该框架使用基于树状排序的方法来联合优化词汇多样性和语义忠实度。通过在SGD-X基准测试上,使用我们的框架生成的提示增强了训练数据,可以改善强基线方法的推广能力,表现出更好的平均联合目标准确率 (JGA) 和模式敏感度 (SS)。